WATER REUSE – A PILLAR OF CIRCULAR ECONOMY ROADMAP OF INNOVATION IN WATER REUSE

Dr Valentina LAZAROVA

Caminho da Inovação'18 – Expo & Networking, Lisbon, Portugal, 26 September 2018

Major impacts of climate change on water resources

Thirsty Planet

Currently almost half of the world's population — some 3.6 billion people live in areas vulnerable to water scarcity and more than 5 billion people could suffer water shortages by 2050 (UN, 2018)

Longer and more severe dry seasons

 Widespread changes in the distribution of precipitation with more frequent drought and flooding events, leading to an overall long-term reduction in river flows and aquifer recharge rates

Deterioration of the quality of all freshwater sources due to higher temperatures and diminishing flows

Increased water use for irrigation

Lazarova: Keynote Reuse, INOVACÃO, 26 Sept 2018

Projected risk of water scarcity Status of water availability per capita

Lazarova: Keynote Reuse, INOVACÃO, 26 Sept 2018

Forecasted risks

Increasing water demand, unsustainable water supply and declining water quality

Higher water costs

• Higher water tariffs

- Increase in cost of wastewater treatment to meet more stringent future regulations
- Elevated costs for pretreatment to obtain target water quality

Stringent policies and regulations

- Regulatory restrictions for water use and withdrawals
- Impact on future economic growth and license to operate
- Regulatory restrictions for specific industrial activities and waste discharges

Impeded business development

- Disruption of water supply and associated financial loss
- Conflicts between countries, sectors, local communities and other large users

Water is a critical resource and a pillar of circular economy

Reuse Water = A Pillar of Circular Economy

A Concern for Sustainability

- Adaptation to Climate Change & Growing Urbanization
- Increasing Role of Water Reuse in Water Management and Urban Planning

Water Reuse – a Global Trend Towards Sustained Growth

Lazarova: Keynote Reuse, INOVACÃO, 26 Sept 2018

Water Reuse Will Likely Have Faster Growth than Desalination in the Next 5 Years

adapted from GWI's Global Water Market Report in 2018, https://tinyurl.com/yafhy36b

Water Reuse Market Trends Cumulative Installed Reuse Capacity in 2017

Cumulative installed reuse capacity by sector, 2017

Key Factors for Sustainable Growth of Water Reuse

Key Issues and Challenges for Sustainable Growth of Water Reuse

1. New policies and regulations

- Provide incentives for water reuse and reform water rights
- Frame best management practice and feasible regulatory frameworks

2. Implementation of Innovative technologies & tools

- Advance in engineering and technology
 - ✓ Scale-up and long-term efficiency of full-scale installations
 - ✓ Compatibility with existing technologies and infrastructure
 - ✓ Failure risk management
 - ✓ Monitoring: sensor reliability, calibration and data analysis

Energy and cost efficiency

- ✓ Water & energy nexus
- ✓ Cost & risk nexus

3. Soft science development

 public perception & education, health & environmental risk assessment, cost/benefits & LCA analysis...

Water Reuse Regulations: New Challenges with the Advance in Science and Analytical Chemistry

New Challenges of Water Reuse Improve Communication and Public Education

Technical Challenges ?!?

New Challenges

220000

The Oldest Challenge

Protesting against new technology : the early days Why make it simple when you can make it complicated?

Lazarova: Keynote I

Technology as Enabler of Sustainable Water Cycles – Water Quality ≠ Source of Water

 With current technologies, source water quality no longer dictates product water quality

Technology as Enabler of Sustainable Water Cycles – The Role of Membranes

Technology as Enabler of Water Reuse – The Example of Orange County, CA

Groundwater Replenishment System (GWRS) Advanced Water Treatment Facility 2008 – 265,000 m³/d 2015 – 378,000 m³/d 2022 – 492,000 m³/d

1976 Water Factory 21

2004-2008 Interim Water Factory MF/RO/UV 2008 Advanced Water Purification Factory

Lazarova: Keynote

Technology as Enabler of Water Reuse – The Example of Orange County, CA

Highlights

- 1976: Water Factory 21 for seawater barrier (1976-2004), 57,000 m³/d, 23 injection wells, first RO in 1977, 67% recycled water
- 2004-2008 Interim Water Factory MF/RO/UV (19,000 m³/d)
- 2008: Groundwater replenishment system, 265,000 m³/d
 Advanced Water Purification: MF / 3 stage TFC RO / UV+H₂O₂ / on-line monitoring
 - ✓ Extension of the seawater barrier with 100% recycled water and replenishment of existing spreading basins

Technology as Enabler of Water Reuse –

The Example of West Basin, CA

Highlights

- 1995: West Basin WRP (The Edward C. Little WRP), One of the first MF/RO, 47,300 m³/d (five types of "designer" water, total 170,000 m³/d) 153 injection wells
- Step-by-step implementation with permits for injection of 35% initially to currently 100% of recycled water
 Advanced Water Treatment MF/RO/UV+H₂O₂/ on-line monitoring
 Pilot studies and evolution of membrane technologies
 Economic viability (subsidiaries + diversification)

Sustainable Water Cycles with Water Reuse Technology as Enabler – The NeWater Story

- Step by step process **Gaining public** perception Learning from overseas experience (Water Factory 21, etc) **Full-scale** implementation Demonstration Source: Courtesy of PUB (2003 – present) **Plant Study** 1998 - 2002 **Pilot Plant** Study Initial Ground Breaking Research • Test of reliability and robustness of MF/RO, UF/RO, UV...
 - Operational experience used for the design of full-scale plants
 - Lessons learned applied to new plants and expansions

Lazarova: Keynote Reuse, INOVACAO, 26 Sept 2018

Lazarova: Keynote I

Global Water Reuse Technology Innovation Trends

- Improvement of reliability, performance, flexibility and robustness of existing technologies
- ✓ MBR, biofiltration, advanced oxidation, disinfection....
- ✓ Multi-barrier membrane treatment (MF/RO, UF/RO)
- New cost and energy efficient technologies for conventional and advanced treatment
- ✓ C&N removal, removal of trace organics...
- ✓ Nano-technologies, new membranes...
- Improved water quality and process performance monitoring
- \checkmark On-line monitoring and new surrogate parameters
- Broad-spectrum analysis of pathogens, emerging contaminants, toxicity, bioassays...
- ✓ Analytical methods for trace organics, nanoparticles, antibiotic resistance...

Global Water Reuse Technology Innovation Trends – Treatment Levels Required for Water Reuse

Global Water Reuse Technology Innovation Trends – Treatment Levels Required for Water Reuse

Global Water Reuse Technology Innovation Trends – Typical Treatment Trains for Water Reuse

Improvement of Existing Technologies

Global Water Reuse Technology Innovation Trends – Typical Treatment Trains for Water Reuse

Lazarova: Keynote Reuse, INOVACÃO, 26 Sept 2018

Advanced Biological Treatment Membrane Bioreactors (MBRs)

- Two major types
 - Submerged membranes (mostly for urban wastewater)
 - ✓ Side stream membranes (mostly for industrial wastewater)

Major advantages

- ✓ Low footprint and modular design
- ✓ High effluent quality, solids free, SDI<3, enhanced C & N removal, disinfection
- ✓ Reliability & automation
- Key challenges
 - ✓ Scale-up for very large plants
 - ✓ Pre-treatment
 - ✓ Capex 400 to 6600 €/m³
 - ✓ Energy & Opex 0.44-1.32 €/m³
 - ✓ Membrane commodization
 - ✓ MBR-RO coupling
 - ✓ Performance evaluation: LRVs and integrity tests (pressure decay...)

Key Challenges of MBR – Energy Use

- High energy use than activated sludge
- High influence of
- hydraulic loading
 38 to 80% of energy for aeration and scouring

Reuse09,

Main Advantages of MBRs – Enhanced Removal of Organic Micropollutants

Adsorbable compounds (beneficial effect of high sludge concentration)

Global Water Reuse Technology Innovation Trends – Typical Treatment Trains for Water Reuse

Lazarova: Keynote Reuse, INOVACÃO, 26 Sept 2018

RO Application in Water Reuse RO Fouling Control

 Efficient pre-treatment processes with increasing use of MF/UF and MBR technologies

Good operation practices (pH control, chloramination, P removal)

Use of low-fouling / low differential pressure membranes and large 16" elements

♦ New cleaning procedures (IDE PROGREEN™ physical online pulse flow cleaning; direct forward osmosis high salinity osmotic backwash...)

Global Water Reuse Technology Innovation Trends – Typical Treatment Trains for Water Reuse

Ozonation – Major Advantages

- Suitable for all microorganisms: viruses, bacteria and protozoa cysts
- Yields additional water quality improvement: removal of colour, odour and refractory organics
- Efficient for low quality effluents
- Near-complete removal of emerging organic micropollutants

Ozone Application for Wastewater Treatment – Lessons Learned

 Ozone disinfection is very efficient for wastewater disinfection with low HRT (<4 min) and dosage depending on water quality

 At such low HRT, ozone dose plays important role for removal of organic micropollutants

- completion of the 1st kinetic stage of oxidation
- e.g. 5-20 mgO₃/L transferred ozone dose

Micropollutants Removal Comparison of Ozone with Other AOP Processes

- Betablockers, carbamazepine, diclofenac, sulfamethoxazole, etc. – very high removal (>98%
 with ozone alone at low dose (5 mg/L)
- Removal may increase (>) or decrease (>) with H₂O₂ addition or UV irradiation

Coexistence of radical and molecular pathways

Production of High-Quality Recycled Water The case of Lausanne

Full-scale implementation

 R&D on micropollutant removal and selection of 2 technologies

(2020)

Detailed

design

(2018)

(2011 - 2014)

Preliminary Research

(<2009)

0

 \mathbf{O}

Side by side pilot tests (PAC+SF, O3+SF, PAC+membranes)
 Expert panel: lessons learned applied to plant design

- Objectives
 - ✓ Leman Lake health protection and safety Pilot Plant Studies
 - $\checkmark\,$ Control of Capex and Opex
 - ✓ High reliability of operation and treatment flexibility
- Treatment solution
 - \checkmark Enhanced primary treatment
 - \checkmark Enhanced secondary treatment by biofiltration (DN+N)
 - ✓ Advanced tertiary treatment by ozonation, powdered activated carbon, sand filtration and final UV disinfection
 - Design capacity 8640 m³/d
 - Water quality: <10 mgDOC/L, <100 *E.coli*/100 mL, <100 Enterococci/100 mL, 12 micropollutants (pharmaceuticals, additives, pesticides)

41 Influence d

UV Disinfection – Major Challenges

- UV dose control
- High influence of water quality
- Influence of type of microorganism
 High influence of hydrodynamic conditions

New Technologies

Lazarova: Keynote I

New Technologies Nano-engineered Membranes

- New nanomaterial membranes
 - ✓ Thin film nanocomposites (e.g. NanoH2O QuantumFlux)
 - ✓ Self-cleaning/catalytic
 - Mixed matrix membranes
 (e.g. hybrid TiO₂/polymer...)
- Carbon based membranes
 - ✓ Carbon nanotubes (CNT)
 - ✓ Graphene
- Biomimetic membranes
 - ✓ Aquaporin

Sected flux increase x 10-20

Advanced Monitoring

Technology Advance in Monitoring

• Two main categories

- ✓ Analytical (compliance) monitoring of physico-chemical parameters, microorganisms & pathogens, trace organics and emerging pollutants, antimicrobial resistance....)
- ✓ Performance monitoring (e.g. membrane integrity testing, on-line monitoring, sensors & data management....)

Example: Innovation in microbial monitoring

On-line Process Monitoring of Advanced Treatment Schemes – MF&UF/RO/AOP

List of typical parameters for on-line monitoring (IPR&DPR)

- ✓ Turbidity through MF/UF
- ✓ Pressure decay test with MF/UF
- ✓ Conductivity through RO
- ✓ TOC through RO
- ✓ UVT into UV AOP
- ✓ UV power delivered
- $\checkmark\,$ pH through decarbonation
- ✓ pH through lime addition TOC: Problems with some in pood of data validation (avor

Apr-16 May-16 Jun-16

TOC: Problems with some individual readings and need of data validation (average of several readings and daily composite samples

Jul-16

Aua-16

Sep-16 Oct-16

Nov-16 Dec-16

1.6

0.8 0.7 0.6

0.6 0.5

0.4

0.2

01

Feb-16

Mar-16

Orgar

Broad Spectrum Analysis of Pathogens

- Detection of 22 fecal pathogens in less than 3 hours
 - ✓ Automated analysis, useful for Sanitation Safety Plans and control monitoring
 - ✓ Proprietary technology with cost of 500 €/analysis (22 € per pathogen)

E. coli 0157

 Campylobacter (jejuni, coli and upsaliensis)
 Cryptospor

 Clostridium difficile (toxin A/B)
 Entamoet

 Plesiomonas shigelloides
 Giardia lat

 Salmonella
 Giardia lat

 Yersinia enterocolitica
 Vibrio (parahaemolyticus, vulnificus and cholerae)

 Vibrio cholerae
 Diarrheagenic E. coli/Shigella

 Enteroaggregative E. coli (EAEC)
 Enteropathogenic E. coli (EPEC)

 Enterotoxigenic E. coli (ETEC) lt/st
 Shiga-like toxin-producing E. coli (STEC) stx1/stx2

Shigella/Enteroinvasive E. coli (EIEC)

Parasites

Cryptosporidium Cyclospora cayetanensis Entamoeba histolytica Giardia lamblia

Source: Courtesy of SUEZ

Indicators vs Pathogens in raw wastewater

 Indicator content in raw sewage ✓ E. coli: 6-7 log 			Pathogens (FilmArray Test)	Results	
				Bacteria	
 ✓ Enterococci: 5-6 log ✓ Bacteriophages F+: 2-3 log ✓ Anaerobic spores: 3-5 log 				Campylobacter (C. jejuni / C. coli / C. upsaliensis)	1,7.10⁵ < X < 1,7.10⁵
				Clostridium difficile (toxines A/B)	500 < X < 1,7.10⁵
				Plesiomonas shigelloides	< 500
	 Pathogen content in raw sewage ✓ Bacteria: 5-6 log ✓ Giardia: 4-3 log ✓ Viruses: 6-7 log MBR permeat 			Salmonella	500 < X < 1,7.10⁵
				Vibrio (V. parahaemolyticus / V. vulnificus/ V. cholerae)	<500
				Vibrio cholerae	<500
				Yersinia enterocolitica	1,7.10 ⁵ < X < 1,7.10 ⁶
				E. coli enteroagregative (EAEC)	>1,7.10 ⁶
				E. coli enteropathogen (EPEC) **	NA
				E. coli enterotoxin (ETEC)	1,7.10 ⁵ < X < 1,7.10 ⁶
	✓ Not detected indi	cators & path	nogens	E. coli de type Shiga producing toxins (STEC)	1,7.10⁵ < X < 1,7.10⁵
te,	E. coli	Entérocoques		E. coli O157*	500 < X < 1,7.10⁵
	Spores anaérobies	ores anaérobies 🛛 📱 Bactériophages ARN F+		Shigella/E. coli enteroinvasive (EIEC)	500 < X < 1,7.10⁵
				Parasites (protozoa)	
oru	1,00E+08	_		Cryptosporidium	<20
ק	1,00E+07		Cyclospora cayetanensis	<20	
ntration ea NPP/100 m	1 00E+06			Entamoeba histolytica	20< X <6,7.103
				Giardia lamblia	6,7.10 ³ < X < 6,7.10 ⁴
	1,00E+05			Viruses	-
	1,00E+04			Adenovirus F 40/41	> 3,3.10 ⁷
ce	1,00E+03 —			Astrovirus	> 3,3.10 ⁷
Con	1 00F+02			Norovirus GI/GII	3,3.10 [€] < X < 3,3.10 ⁷
				Rotavirus A	3,3.10 [€] < X < 3,3.10 ⁷
	1,00E+01			Sapovirus (Genogroups I, II, IV et V)	3,3.10 ⁶ < X < 3,3.10 ⁷
	1,00E+00				
	1 1	2 /	E		

Towards Zero Health and Process Failure Risk

- Increasing health risk requirements (theoretical basis)
- Risk of failures should be minimised with reasonable O&M costs

EU Microbial Performance Targets for Agricultural Irrigation

- WHO 2006: theoretical credit
- Australia 2006: impossible to measure inlet-out of the reclamation plant, includes the addition barriers
- France 2010: 4 log removal inlet-outlet of the reclamation plant, impossible to demonstrate

Reclaimed water quality class	Indicator microorganisms (*)	Performance targets for the treatment chain (log10 reduction)
Α	E. coli	≥ 5.0
	Total coliphages/ F-specific coliphages/somatic coliphages/coliphages(**)	≥ 6.0
	<i>Clostridium perfringens</i> spores/spore-forming sulfate-reducing bacteria(***)	≥ 5.0

(*) The reference pathogens Campylobacter, Rotavirus and Cryptosporidium can also be used for validation monitoring purposes instead of the proposed indicator microorganisms. The following \log_{10} reduction performance targets should then apply: Campylobacter (≥ 5.0), Rotavirus (≥ 6.0) and Cryptosporidium (≥ 5.0).

(**) Total coliphages is selected as the most appropriate viral indicator. However, if analysis of total coliphages is not feasible, at least one of them (F-specific or somatic coliphages) has to be analyzed.

(***) Clostridium perfringens spores is selected as the most appropriate protozoa indicator. However sporeforming sulfate-reducing bacteria is an alternative if the concentration of Clostridium perfringens spores does not allow to validate the requested log10 removal.

EU Minimum Quality for Agricultural Irrigation

Minimum reclaimed water quality class		Crop category	Irrigation method			
A	<10 E.coli/100mL	All food crops, including root crops consumed raw and food crops where the edible part is in direct contact with reclaimed water	All irrigation methods			
в	<100 E.coli/100mL	Food crops consumed raw where the edible part is produced above ground and is not in direct	All irrigation methods Alfafa, corn			
с	<1000 E.coli/100mL	crops and non-food crops including crops to feed milk- or meat-producing animals	Drip irrigation* only O			
D		Industrial, energy, and seeded crops	All irrigation methods			
 Class A&B for all type of crops Corn, potatoes irrigation& maturation ponds are excluded 						

Microbial Risk Assessment Microbial Performance Targets for Potable Reuse

- Different methods used to calculate health-based targets
- Numerous uncertainties
- High associated costs

Concentrations in source water (organisms per litre)

O&M Costs of Advanced Water Reuse

- O&M costs increase with increasing treatment intensity
 - ✓ California: 1,22-1,78 \$/m³ for DPR plant capacity <34,000 m³/d; 0.89-1.3 \$/m³ for large plants
 - ✓ Texas: 0.105-1.00 \$/m³ depending on size and treatment with O&M costs representing 39 to 82% of lifecycle costs

Lazarova: Keynote Reuse, INOVACÃO, 26 Sept 2018

Concluding Remarks

- Water reuse is becoming an important part of the water management portfolio in water scarce regions and many urban areas, creating enhanced opportunities for innovation and building a circular economy
- The safety of water reuse can be secured by innovative tools and technologies
 - Improving the performance, robustness and reliability of water reclamation facilities and implementing new monitoring tools
 - ✓ Safeguarding the economic viability of recycled water
- Holistic approach should be applied to develop water reuse
 - ✓ Promote "fit to purpose" treatment and macroeconomic long-term benefits
 - Provide incentives, education and improved communication
 - ✓ Bridge the gap between practice, research and regulations

Publishing

Milestones in Water Reuse

The Best Success Stories

Valentina Lazarova, Takashi Asano. Akica Bahri and John Anderson

Valentina LAZAROVA Kwang-Ho CHOO Peter CORNEL

WATER

G Y WATER REUSE

Publishing

valentina.lazarova@suez.com